\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1+x_2\right)\)
\(=m^2-3m+1\)
Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1+x_2\right)\)
\(=m^2-3m+1\)
Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề
cho pt x^2 -2mx +m^2-m+1=0 tim m để pt có hai nghiệm x1 x2 sao cho x1x2-x1-x2
Cho PT x2 - mx + m - 2 = 0. Tìm m để PT trên có 2 nghiệm x1, x2 sao cho biểu thức P = x1x2 - x12 - x22 đạt GTNN
Cho PT x2 + 2mx + 2m - 1 = 0 . Gọi x1, x2 là hai nghiệm của Pt. Tìm giá trị của m để A = x12x2 + x1x22 dđat gia trị lớn nhất
cho pt ẩn x: x^2 -2mx-1=0 (1)
a) chứng minh rằng pt đã cho lun có 2 nghiệm phân biệt x1,x2
Tìm các giá trị của m để x1^2+x2^2-x1x2=7
Đề: cho pt với x là ẩn số, m là tham số: x^2 - 2mx + m^2 - m + 1 =0
a/ Giải pt với m=1
b/ Tìm tất cả giá trị của tham số m để pt có hai nghiệm x1, x2 thỏa mãn biểu thức A = x1x2 - x1 - x2 đạt GTNN.
Mong mọi người giải giúp vói ạ T^T
cho PT\(\sqrt{x^2+mx}-\sqrt{x-2}=0\) tìm các giá trị thực của m sao cho pt có 2 nghiệm x1x2 sao cho x1+x2=3(x1x2)
Cho pt ẩn x: x^2-2mx+4=0 (1)
A) giải pt đã cho khi m=3
B) tìm gtrị của m để pt (1) có hai nghiệm x1,x2 thoả mãn: (x1+1)^2+(x2+1)^2=2
cho pt: ( m +1 )x2 - 2(m-1)x+m-3=0. tìm các gt của m để pt:
a) có đúng 1 nghiệm
b) có hai nghiệm x1, x2 thỏa mãn: x1x2>0 và x1=2x2
Help me😭😭
Cho pt x^2-2mx-2m-5=0( m là tham số)
1/ CMR pt luôn có 2 nghiệm phân biệt với mọi giá trị của m
2/ tìm m để | x1-x2 | đạt giá trị nhỏ nhất ( x1,x2 là nghiệm của pt)