\(\Delta=\left(2m+3\right)^2-4\left(m^2+2m+2\right)=4m+1\ge0\Rightarrow m\ge-\frac{1}{4}\)
\(\left(x_1-x_2\right)^2=2x_1+x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2+x_1\)
\(\Leftrightarrow4m+1=2m+3+x_1\)
\(\Rightarrow x_1=2m-2\Rightarrow x_2=2m+3-x_1=5\)
Mà \(x_1x_2=m^2+2m+2\Rightarrow5\left(2m-2\right)=m^2+2m+2\)
\(\Leftrightarrow m^2-8m+12=0\Rightarrow\left[{}\begin{matrix}m=6\\m=2\end{matrix}\right.\)