a)xét phương trình có: \(\Delta=b^2-4ac=[-\left(2m-3\right)]^2-4\left(m^2-2m+2\right)=4m^2-12m+9-4m^2+8m-8=1-4m\) để phương trình có 2 nghiệm phân biệt thì \(\Delta\)>0 hay 1-4m>0 <=> 4m<1 <=> m<\(\frac{1}{4}\)
Vậy với m<\(\frac{1}{4}\) thì phương trình có 2 nghiệm phân biệt
b) Theo định lí Vi-ét có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m-3\\x_1.x_2=\frac{c}{a}=m^2-2m+2\end{matrix}\right.\)
x12 +x22=(x12 +2x1.x2+x22)-2x1.x2=(x1+x2)2-2x1.x2=(2m-3)2-2(m2-2m+2) =4m2-12m+9-2m2+4m-4=2m2-8m+5
Vậy x12+x22=2m2-8m+5