\(\Leftrightarrow sinx-\frac{1}{2}\left(1-2sin^2x\right)+m+\frac{3}{2}=0\)
\(\Leftrightarrow sin^2x+sinx+1=-m\) (1)
Đặt \(f\left(x\right)=sin^2x+sinx+1\)
Ta có: \(f\left(x\right)=sin^2x+sinx-2+3=\left(sinx-1\right)\left(sinx+2\right)+3\le3\)
\(f\left(x\right)=\left(sinx+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow\frac{3}{4}\le f\left(x\right)\le3\)
\(\Rightarrow\left(1\right)\) có nghiệm khi và chỉ khi: \(\frac{3}{4}\le-m\le3\)
\(\Leftrightarrow-3\le m\le-\frac{3}{4}\)