Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Hang

cho pt 3x^2-5x-4=0

không giải pt hãy tính giá trị của biểu thức A=x1^3x2+x1x2^3

với x1, x2 là nghiệm của pt

Lân Trần Quốc
26 tháng 7 2019 lúc 21:35

Do \(\Delta=5^2+4\cdot3\cdot4=25+48=73>0\) nên PT có 2 nghiệm phân biệt.

Khi đó: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-\left(-5\right)}{3}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{-4}{3}\end{matrix}\right.\)

Từ đây, ta suy ra:

\(A=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x^2_2\right)\\ =x_1x_2\left(x_1^2+2x_1x_2+x^2_2-2x_1x_2\right)\\ =x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\frac{-4}{3}\cdot\left[\left(\frac{5}{3}\right)^2-\frac{-4\cdot2}{3}\right]\\ =\frac{-4}{3}\cdot\frac{25-\left(-8\cdot3\right)}{9}\\ =\frac{-4}{3}\cdot\frac{25+24}{9}\\ =\frac{-4}{3}\cdot\frac{49}{9}=\frac{-196}{27}\)

Chúc bạn học tốt nhaok.

Trần Minh Hoàng
26 tháng 7 2019 lúc 21:40

Ta có:

A = x1x2(x12 + x22) = x1x2[(x1 + x2)2 - 2x1x2]

Ta có: \(\Delta=\left(-5\right)^2-4.3.\left(-4\right)=25+48>0\)

Áp dụng định lý Vi-ét với phương trình 3x2 - 5x - 4 ta có:
x1 + x2 = \(\frac{-\left(-5\right)}{3}=\frac{5}{3}\)
x1x2 = \(\frac{-4}{3}\)

Thay vào A ta được:

A = \(\frac{-4}{3}\left[\left(\frac{5}{3}\right)^2-2.\frac{-4}{3}\right]=\frac{-4}{3}.\left(\frac{25}{9}+\frac{8}{3}\right)=\frac{-4}{3}.\frac{49}{3}=\frac{-196}{3}\)

(P/s: CÓ thể SAI)


Các câu hỏi tương tự
Như
Xem chi tiết
Huỳnh Giang
Xem chi tiết
duy khánh
Xem chi tiết
Phương Lý 21 Nguyễn Thị
Xem chi tiết
Quý Công Tử *
Xem chi tiết
Nguyễn Bích Ngọc
Xem chi tiết
Hà Thương Huyền
Xem chi tiết
Không Biết
Xem chi tiết
Nguyễn Trung Quân
Xem chi tiết