Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quynh

Cho phương trình \(x^2+mx-35=0\)
a.Tìm m để phương trình có 1 nghiệm = -5.Tìm nghiệm còn lại?
b.Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=86\)

Nguyễn Huy Tú
4 tháng 3 2022 lúc 7:36

a, Thay x = -5 ta đc 

\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)

Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)

b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)

Vậy pt trên luôn có 2 nghiệm pb 

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)

\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)

Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 7:36

a: Thay x=-5 vào pt, ta được:

25-5m-35=0

=>5m+10=0

hay m=-2

Theo đề, ta có: \(x_1x_2=-35\)

nên \(x_2=7\)

b: \(ac=-1\cdot35< 0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)

hay \(m\in\left\{4;-4\right\}\)


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
Anh Quynh
Xem chi tiết
Niki Rika
Xem chi tiết
Thanh Trúc
Xem chi tiết
Niki Rika
Xem chi tiết
Anh Quynh
Xem chi tiết
Niki Rika
Xem chi tiết
Anh Quynh
Xem chi tiết