a, Thay x = -5 ta đc
\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)
Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)
b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)
Vậy pt trên luôn có 2 nghiệm pb
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)
\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)
a: Thay x=-5 vào pt, ta được:
25-5m-35=0
=>5m+10=0
hay m=-2
Theo đề, ta có: \(x_1x_2=-35\)
nên \(x_2=7\)
b: \(ac=-1\cdot35< 0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)
hay \(m\in\left\{4;-4\right\}\)