x2+2(m-2)x-m2=0(✳)
để phương trình (✳) có 2 nghiệm phân biệt x1,x2 thì
△'>0⇔(m-2)2-1.(-m2)>0⇔m2-4m+4+m2>0⇔2m2-4m+4>0⇔2(m2-2m+2)>0⇔2[(m2-2m+1)+1]>0⇔2(m-1)2+2>0(luôn đúng)
⇒phương trình (✳) luôn có hai nghiệm phân biệt x1,x2 với mọi m
khi đó theo định lí Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-2\right)=4-2m\\x_1.x_2=-m^2\end{matrix}\right.\)
do đó: x1<x2⇔x1-x2<0⇔(x1-x2)2<0
⇔\(x_1^2-2x_1x_2+x_2^2< 0\Leftrightarrow\left(x_1^2+2x_1x_2+x_2^2\right)-4x_1x_2< 0\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 0\Leftrightarrow\left(4-2m\right)^2-4\left(-m^2\right)< 0\Leftrightarrow16-16m+4m^2-4m^2< 0\Leftrightarrow16-16m< 0\Leftrightarrow m>1\)
vậy m>1 là các giá trị cần tìm