Thấy \(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(-3\right)=m^2-4m+16>0\left(\forall m\in R\right)\)
Có: Hệ thức\(\Leftrightarrow\)\(\left(x_1+x_2\right)\left(1-\dfrac{x_1-x_2}{\sqrt{x_1^2+2018}+\sqrt{x_2^2+2018}}\right)=0\\ \Rightarrow x_1+x_2=0\left(1-\dfrac{x_1-x_2}{\sqrt{x_1^2+2018}+\sqrt{x_2^2+2018}}\ne0\right)\)
Áp dụng hệ thức Vi-ét:
\(0=x_1+x_2=-\dfrac{b}{a}=m-2\\ \Rightarrow m=2\)