Câu 2: (2 điểm) Cho phương trình:. (m là tham số)
1) Tìm các giá trị của m để phương trình (1) có hai nghiêm phân biệt.
2) Tìm các giá trị của \mathrm{m} để phương trình (1) có hai nghiệm phân biệt thỏa mãn:
1. cho (P):y=\(\dfrac{1}{2}x^2\)và (d):y=x+m
a, vẽ (P)và (d) khi m=-1 trên cùng một hệ trục tọa độ
b, tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành đô lần lượt là x1, x2 thỏa mãn
Cho A = (1/(sqrt(x) - 1) + (sqrt(x))/(x - 1)) * (x - sqrt(x))/(2sqrt(x) + 1) * v x > 0 x ne1 . 8 1. Rút gọn biểu thức A; 2. Tính giá trị của A khi x = 9
3. Tìm m để phương trình A = m có nghiệm.giải phương trình:
1.|\(^{X2}\)-3| =|x-√3|
2.\(\sqrt{9^{ }x2-12x+4}=\sqrt{^{ }x2}\)
3\(\sqrt{^{ }x2-4x+4}=\sqrt{4^{ }x2-12x+9}\)
*tất cả các chữ \(^{x2}\) đều là x bình phương
Cho biểu thức M=\(\)\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}vớix>2,x\ne4\)
a,Rút gọn biểu thức M
b,Tính giá trị M khi x=3+\(2\sqrt{2}\)
c,Tìm giá trị của x để M>0
(2,0 điểm) Cho các biểu thức A = (sqrt(x))/(2sqrt(x) - 4); B = (sqrt(x))/(sqrt(x) + 2) +3(sqrt(x)-x /x-4 với x >= 0 ,x ne4 1) Tính giá trị của A khi x = 36 . 2) Rút gon biểu thức C = B : A . 3) Tìm các giá trị của x để C. sqrt(x) < 4/3 .
Cho hai biểu thức A = (sqrt(x) + 2)/(sqrt(x) + 3) và B= (sqrt(x))/(sqrt(x) - 2) + 3/(sqrt(x) + 2) + x+4 4-x .voix>=0,x ne4 a) Tính giá trị của biểu thức A tại x = 25 b) Chứng minh rằng B = 5/(sqrt(x) + 2) c) Tìm tất cả các giá trị nguyên của x dễ tích AB > 1
Cho biểu thức P=(3/1 - x + 1/√x + 1): 1/√x + 1 A Nêu điều kiện xác định và rút gọn biểu thức P B tìm các giá trị của x để P = 5/4 C Tìm giá trị nhỏ nhất của biểu thức m= x + 12/√x - 1 x 1/P