Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuấn Khanh Nguyễn

Câu 2: (2 điểm) Cho phương trình:\mathrm{x}^{2}-2(\mathrm{~m}+1) \mathrm{x}+\mathrm{m}^{2}+3 \mathrm{~m}+2=0 (1). (m là tham số)

1) Tìm các giá trị của m để phương trình (1) có hai nghiêm phân biệt.

2) Tìm các giá trị của \mathrm{m} để phương trình (1) có hai nghiệm phân biệt \mathrm{x}_{1}, \mathrm{x}_{2} thỏa mãn: \mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}{ }^{2}=12.

YangSu
16 tháng 5 2023 lúc 16:55

\(1)\) Để m có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2-4\left(m^2+3m+2\right)>0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3m+2\right)>0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4m^2+8m+4-4m^2-12m-8>0\)

\(\Leftrightarrow-4m-4>0\)

\(\Leftrightarrow-4m>4\)

\(\Leftrightarrow m< -1\)

\(2)\) Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2+3m+2\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=12\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-12=0\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)

\(\Leftrightarrow4m^2+8m+4-2m^2-6m-4-12=0\)

\(\Leftrightarrow2m^2+2m-12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)


Các câu hỏi tương tự
Usagi Tsukino
Xem chi tiết
hello hello
Xem chi tiết
Nguyễn Phương Quỳnh Chi
Xem chi tiết
kietdeptrai
Xem chi tiết
Trang Đinh
Xem chi tiết
Alice Trầnn
Xem chi tiết
Đỗ ĐứcAnh
Xem chi tiết
kietdeptrai
Xem chi tiết
Infinitive IQ
Xem chi tiết