Để PT có hai nghiệm x1,x2 thì:
Δ' = (-1)2 - 1.(3m-2) > 0
<=> m <1
Áp dụng Viet, ta có :
x1 + x2 = -2
x1.x2 = 3m-2
Ta có :
x12 + x22 = (x1 + x2)2 - 2x1.x2 = (-2)2 - 2(3m-2) = 20
<=> 4 -6m + 4 = 20
<=> m = -2 (thỏa mãn)
Vậy m = -2
Để PT có hai nghiệm x1,x2 thì:
Δ' = (-1)2 - 1.(3m-2) > 0
<=> m <1
Áp dụng Viet, ta có :
x1 + x2 = -2
x1.x2 = 3m-2
Ta có :
x12 + x22 = (x1 + x2)2 - 2x1.x2 = (-2)2 - 2(3m-2) = 20
<=> 4 -6m + 4 = 20
<=> m = -2 (thỏa mãn)
Vậy m = -2
Cho phương trình X2 -m -2X+2m-8=0 ( m là tham số)
a) C/m phương trình luôn có nghiệm với mọi giá trị của m
b) Tính S và P theo m
c) Tìm m để phương trình có 2 nghiệm X1;X2 thỏa X12+X22-X1-X2=14
\(2x^2+2mx+m^2-2=0\)
Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn
Cho phương trình: x2 - 2x - m2 + 1 = 0. Tìm m để pt có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - x2).(x13 - 2x12 - m2x1 + 2x2)= -3
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
Cho phương trình:x2-2(m-1)x+m2-2m=0 (m là tham số)
a,Giải phương trình với m=3
b,Tìm m để phương trình có 1 nghiệm x=-2.Với m tìm được hãy tìm nghiệm còn lại của phương trình
c,Tìm m để phương trình có 2 nghiệm x1 và x2 thỏa mãn:x12+x22=4
c3
cho PT ẩn x: x2-2(m-1)x-m-3=0 (1)
a/ giải phương trifnhd đã cho khi m =-3
b/ tìm giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho x12 + x22 =10
c/ tìm hệ thức liên hệ giữa các nghiệ ko phụ thuộc vfo giá trị của m
Cho phương trình : x2-4x+m=0(m là tham số)
a) Tính các giá trị của m để phương trình có các nghiệm x1,x2 thỏa mãn x1< x2 và x22-x12=18
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2