Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2m\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\frac{1}{x_1+1}\\b=\frac{1}{x_2+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{1}{x_1+1}+\frac{1}{x_2+1}=\frac{x_1+x_2+2}{x_1x_2+x_1+x_2+1}\\ab=\frac{1}{\left(x_1+1\right)\left(x_2+1\right)}=\frac{1}{x_1x_2+x_1+x_2+1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=\frac{4}{-2m+3}\\ab=\frac{1}{-2m+3}\end{matrix}\right.\) (\(m\ne\frac{3}{2}\))
Theo Viet đảo, a và b là nghiệm của pt:
\(x^2-\frac{4}{-2m+3}x+\frac{1}{-2m+3}=0\Leftrightarrow\left(3-2m\right)x^2-4x+1=0\) (\(m\ne\frac{3}{2}\))