Cho phương trình x2-2x+m+2=0 ( m là tham số). Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn: \(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Gấp! Mọi người giúp mình nha!!!
Cho phương trình \(x^2-\left(m+1\right)x+m=0\left(1\right)\)(với m là tham số)
a.Giải phương trình (1) khi m=-2
b.Tìm giá trị của m để phương trình (1) có nghiệm phân biệt x1,x2 thỏa mãn:
(\(x^2_1-mx_1+x_2+2m\))\(\left(x^2_2-mx_2+x_1+2m\right)=9x_1x_2\)
1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
1.cho phương trình \(x^2+5x+m-2=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1;x2 thỏa mãn hệ thức
\(\dfrac{1}{ \left( x_1-1\right)^2}+\dfrac{1}{\left(x_2-1\right)^2}=1\)
1) Cho phương trình 5x^2+3x-1=0 có hai nghiệm x1,x2. Không giải phương trình, hãy tính giá trị của biểu thức A=\(\left(3x_1+2x_2\right)\left(3x_2+x_1\right)\)
2) Cho phương trình 7x^2-2x-3=0 có hai nghiệm là x1,x2 tính giá trị của biểu thức
M=\(\dfrac{7x_1^2-2x_1}{3}+\dfrac{3}{7x_2^2-2x_2}\)
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
cho phương trình : \(x^2-4x+m+1=0\)
tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn \(x_1^2+x_2^2=4\left(x_1+x_2\right)\)
cho phương trình \(x^2-2\left(m+3\right)x+m+1=0\) (1) . Gọi \(x_1\),\(x_2\) là các nghiệm dương của phương trình (1). Tìm GTNN của \(P=\left|\dfrac{1}{\sqrt{x_1}}-\dfrac{1}{\sqrt{x_2}}\right|\)