a) Δ' = \(m^2-m+2>0\)
⇒ PT luôn có hai nghiệm
b) Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)
Ta có: \(x^2_1+x^2_2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)\(=4m^2-8m+16=\left(2m-2\right)^2+12\ge12\)
\(\Rightarrow\)M \(\ge\frac{-24}{12}=-2\)
Vậy min M = \(\frac{-24}{12}\Leftrightarrow m=1\)