cho phương trình \(\frac{\sin^3x+\cos^3x}{2\cos x-\sin x}\)=cos2x .
a) chứng minh rằng x=\(\frac{\pi}{2}\)+kπ nghiệm đúng phương trình
b) giải phương trình bằng cách đặt tanx=t ( khi x≠\(\frac{\pi}{2}\)+kπ)
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
Giải các phương trình sau:
a, cos\(\left(3x-\frac{\pi}{6}\right)\)-sin \(\left(2x+\frac{\pi}{3}\right)\)=0
b, tan3x-tanx=0
c, cos2\(\left(x-\frac{\pi}{5}\right)\)=sin2\(\left(2x+\frac{4\pi}{5}\right)\)
d, 4cos2(2x-1)=0
e, cosx+cos2x+cos3x=0
f, 8sin2x.cos2x.cos4x=\(\sqrt{2}\)
g, cos3x-5cosx=sinx
h, sin7x-sin3x=cos5x
tìm m để phương trình : \(\sin^6x+\cos^6x+2\cos3x\cos x-\cos4x+m=0\) có nghiệm thuộc đoạn \(\left[\frac{\pi}{4};\frac{\pi}{2}\right]\)
giải các phương trình sau : a) \(\sin4x=\sin\frac{\pi}{5}\) ; b) \(\sin\left(\frac{x+\pi}{5}\right)=-\frac{1}{2}\) ; c) \(\cos\frac{x}{2}=\cos\sqrt{2}\) ; d) \(\cos\left(x+\frac{\pi}{18}\right)=\frac{2}{5}\)
Tìm tập xác định của hàm số:
y=\(\frac{3sinx+cosx}{cos\left(4x+\frac{2\pi}{5}\right)+cos\left(3x-\frac{\pi}{4}\right)}\)
Tìm giá trị gần đúng nghiệm của các phương trình sau:
cos\(\frac{x}{2}\)= \(\frac{\sqrt{2}}{3}\) trong khoảng (2π, 4π)
Giải các phương trình:
a, cos3x+cos2x-cosx-1=0
b, (2cos-1)(2sinx+cosx)=sin2x-sinx
Giải các phương trình sau:
a, sinx+cosx+1+sin2x+cos2x=0
b, sinx(1+cos2x)+sin2x=1+cos2x
c, \(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
d, sin4x+cos4x=\(\frac{7}{8}cot\left(x+\frac{\pi}{3}\right)cot\left(\frac{\pi}{6}-x\right)\)
Giải các phương trình lượng giác sau:
a, sin2x=1
b, \(\frac{sinx-1}{cos2x+1}=0\)
c, sin(3x-\(\frac{\pi}{6}\)) = \(\frac{\sqrt{3}}{2}\)
d, sin(3x-2)=-1
e, sin3x-cos2x=0
f, sin(2x+ \(\frac{\pi}{3}\)) = tan\(\frac{\pi}{3}\)
g, sin(\(3x-\frac{5\pi}{6}\))
Tính giá trị gần đúng của các nghiệm sau:
sin(2x+ \(\frac{\pi}{6}\))= \(\frac{2}{5}\)trong khoảng (\(-\frac{\pi}{3}\); \(\frac{\pi}{6}\))
giải các phương trình sau : a) \(\sin\left(\frac{x+\pi}{5}\right)=-\frac{1}{2}\) ; c) \(\cos\frac{x}{2}\)=\(\cos\sqrt{2}\)