cho phương trình \(\frac{sin^3x+cos^3x}{2cosx-sinx}\) .
a) chứng minh rằng x=\(\frac{\pi}{2}\)+kπ nghiệm đúng phương trình
b) giải phương trình bằng cách đặt tanx=t ( khi x≠\(\frac{\pi}{2}\)+kπ)
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
giải các phương trình sau : a) \(\sin4x=\sin\frac{\pi}{5}\) ; b) \(\sin\left(\frac{x+\pi}{5}\right)=-\frac{1}{2}\) ; c) \(\cos\frac{x}{2}=\cos\sqrt{2}\) ; d) \(\cos\left(x+\frac{\pi}{18}\right)=\frac{2}{5}\)
tìm m để phương trình : \(\sin^6x+\cos^6x+2\cos3x\cos x-\cos4x+m=0\) có nghiệm thuộc đoạn \(\left[\frac{\pi}{4};\frac{\pi}{2}\right]\)
Giải các Phương trình sau
a) \(sin^4\frac{x}{2}+cos^4\frac{x}{2}=\frac{1}{2}\)
b) \(sin^6x+cos^6x=\frac{7}{16}\)
c) \(sin^6x+cos^6x=cos^22x+\frac{1}{4}\)
d) \(tanx=1-cos2x\)
e) \(tan(2x+\frac\pi3).tan(\frac\pi3-x)=1\)
f) \(tan(x-15^o).cot(x+15^o)=\frac{1}{3}\)
giải các phương trình sau : a) \(\sin\left(\frac{x+\pi}{5}\right)=-\frac{1}{2}\) ; c) \(\cos\frac{x}{2}\)=\(\cos\sqrt{2}\)
giải phương trình \(\frac{\tan x-\sin x}{\sin^3x}=\frac{1}{\cos x}\)
giải giúp e câu này với ạ
1) \(\sin^2x-\sin x=2\cos^2x\)
2) \(2\sin^2x+\left(1-\sqrt{3}\right)\cos\left(\frac{5pi}{2}-x\right)-\sin\frac{pi}{3}=0\)
3) \(\cos\left(3x+\frac{pi}{4}\right)=\cos\frac{pi}{8}\)
Giải phương trình:
sin (3x - \(\frac{\pi}{3}\)) + cos x = 0