Cho phương trình \(x^2-3x+m=0\) (1) (x là ẩn).
Tìm các giá trị m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\).
cho phương trình \(x^2-6\left(m-1\right)x+9\left(m-3\right)=0\left(1\right)\)
a, giải phương trình (1) khi m=2
b, tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt thoả mãn \(x_1+x_2=2x_1.x_2\)
Cho phương trình :
x2 − 2x + 2 − m = 0 (x là ẩn số, m là tham số)
Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức:
2x13 +(m + 2)x2 2 = 5
Cho phương trình: x² - mx + m - 1 = 0(x là ẩn) a) Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của m b) Tìm giá trị của m để phương trình có 2 nghiệm x1, x2 thoả mãn: x1 - 2x2 = 1
Bài 3: Cho phương trình ẩn x: x2 – x + 1 + a = 0 (1)
a) Giải phương trình đã cho với a = 0.
b) Tìm các giá trị của m để phương trình (1) có nghiệm.
Bài 2: cho phương trình\(x^2-2\left(m+1\right)x+2m+10=0\)
a)Tìm m để phương trình có nghiệm này gấp 3 lần nghiệm kia
b)Tìm m để phương trình có 2 nghiệm thỏa mãn \(P=-x_1^2-x_2^2-10x_1x_2\) có giá trị lớn nhất
Cho phương trình x²- 2x + m - 1 = 0 với M là tham số a, Tìm tất cả giá trị của tham số m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn x1²+x2²-3x1x2= 2m²+|m-3|
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
bài 1: cho phương trình \(x^2-2\left(m+2\right)x+m-3=0\)
Tìm m sao cho
a)phương trình có 2 nghiệm thỏa mãn \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
b)phương trình có 2 nghiệm thỏa mãn\(P=x_1^2+x_2^2-3x_1x_2\) nhỏ nhất