\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)
\(\Leftrightarrow3m^2=1\)
\(\Leftrightarrow m^2=\dfrac{1}{3}\)
\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)
xét delta
m2 + 4m2 + 4 = 5m2 + 4 > 0
=> phương trình luôn có 2 nghiệm x1x2
theo Vi-ét ta có:
\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\)
x12 + x22 = 3
<=> ( x1 +x2 )2 - 2x1x2 = 3
<=> m2 + 2m2 + 2 = 3
<=> 3m2 = 1
=> m2 = \(\dfrac{1}{3}\)
=> m = +- \(\dfrac{1}{\sqrt{3}}\)