a/ \(4x^2+\left(m^2+2m+15\right)x+\left(m+1\right)^2-20=0\left(1\right)\)
thay m=1 vào pt(1) ta có:
4x2+18x-16=0=>\(\left[{}\begin{matrix}x=\frac{-9-\sqrt{145}}{4}\\x=\frac{-9+\sqrt{145}}{4}\end{matrix}\right.\)
b/ta có:
\(\Delta=b^2-4ac=\left(m^2+2m+15\right)^2-16[\left(m+1\right)^2-20]\)
=(m2+2m+15)2-16(m2+2m-19)
=(a+2)2-16(a-2)(đặt m2+2m-17=a)đk:\(a\ge-18\)
=a2-12a+36=(a-6)2\(\ge0\)
để pt có 2 nghiệm phân biệt thì: (a-6)2\(\ne0\)
\(\Leftrightarrow a\ne6\) \(\Leftrightarrow m^2+2m-17\ne6\)
\(\Leftrightarrow m\ne-1\pm2\sqrt{6}\)
vậy...