các bạn ơi giúp mình với đề bài cho là phương trình đường thẳng (D) đi qua giao điểm của hai đường thẳng.
y= x-2
y=-2x+1
và cắt trục hoành tại một điểm có tung độ là 2
Cho hàm số \(y=\dfrac{1}{2}x^2\) có đồ thị thì (P) và đường thẳng (d) có phương trình: \(y=x+1\)
a, Vẽ đồ thị hai hàm số trên cùng một mặt phẳng tọa độ Oxy
b, Tìm tọa độ giao điểm của 2 hàm số trên.
Bài 1:Cho parabol (P):y=\(x^2\) và đường thẳng (d):y=mx+5
a)Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt \(\left(x_1;x_2\right)\) với \(x_2< x_1\) sao cho \(\left|x_2\right|>\left|x_1\right|\)
: Cho ba điểm A, B, C trên một đường thẳng theo thứ tự ấy và đường thẳng d vuông góc với AC tại A. Vẽ đường tròn đường kính BC và trên đó lấy một điểm M bất kì .Tia CM cắt đường thẳng d tại D, tia AM cắt đường tròn tại điểm thứ hai là N, tia DB cắt đường tròn tại điểm thứ hai là P a) Cm: tứ giác ABMD là nội tiếp b) Cm: CM.CD không phụ thuộc vào vị trí của M c) Tứ giác APND là hình gì ? tại sao
Cho hệ phương trình
\(\left\{{}\begin{matrix}x+y=6\\x^2+y^2=a\end{matrix}\right.\)
Xác định a để:
a) HPT vô nghiệm
b) HPT có nghiệm duy nhất
c) HPT có 2 nghiệm phân biệt
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Cho phương trình: \(x^2-\left(2m+1\right)x-m-4=0\)
a, Giải phương trình khi m=1
b, Chứng tỏ rằng phương trình luôn có 2 nghiệm phân biệt
Giải các phương trình bằng đồ thị.
Cho phương trình :
\(2x^2+x-3=0\)
a) Vẽ các đồ thị của hai hàm số : \(y=2x^2;y=-x+3\) trong cùng một mặt phẳng tọa độ
b) Tìm hoành độ của mỗi giao điểm của hai đồ thị. Hãy giải thích vì sao các hoành độ này đều là nghiệm của phương trình đã cho ?
c) Giải phương trình đã cho bằng công thức nghiệm, so sánh với kết quả tìm được trong câu b)
Cho phương trình x2 -2(m+1)x +m2+2m-3=0(m là than số)
a. giải phương trình khi m=0
b. Chứng tỏ phương trình luôn có 2 nghiệm phân biệt