Xét phương trình hoành độ của (p) và (d) thỏa mãn phương trình:
\(x^2=2x-m+3\)
\(\Leftrightarrow x^2-2x+m-3=0\left(1\right)\)
Xét phương trình (1) có:
\(\Delta=4-4\left(m-3\right)\)
= \(16-4m\)
Để (p) cắt (d) tại 2 điểm phân biệt thì \(\Delta>0\Leftrightarrow16-4m>0\Leftrightarrow m< 4\)
Với m<4 thì (p) cắt (d) tại 2 điểm phân biệt, ta có:
\(x_1=\dfrac{2-\sqrt{\Delta}}{2}\Rightarrow y_1=\dfrac{\left(2-\sqrt{\Delta}\right)^2}{4}\)
\(x_2=\dfrac{2+\sqrt{\Delta}}{2}\Rightarrow y_2=\dfrac{\left(2+\sqrt{\Delta}\right)^2}{4}\)
Theo đề bài ta có:
\(x_1x_2\left(y_1+y_2\right)=-6\)
\(\Leftrightarrow\dfrac{2-\sqrt{\Delta}}{2}.\dfrac{2+\sqrt{\Delta}}{2}\left[\dfrac{\left(2-\sqrt{\Delta}\right)^2}{4}+\dfrac{\left(2+\sqrt{\Delta}\right)^2}{4}\right]=-6\)
\(\Leftrightarrow\dfrac{\left(2-\sqrt{\Delta}\right)\left(2+\sqrt{\Delta}\right)}{4}.\dfrac{4-4\sqrt{\Delta}+\Delta+4+4\sqrt{\Delta}+\Delta}{4}=-6\)
\(\Leftrightarrow\dfrac{4-\Delta}{4}.\dfrac{8+2\Delta}{4}=-6\)
\(\Leftrightarrow\dfrac{2\left(4-\Delta\right)\left(4+\Delta\right)}{16}=-6\)
\(\Leftrightarrow\dfrac{16-\Delta^2}{8}=-6\)
\(\Leftrightarrow16-\Delta^2=-48\)
\(\Leftrightarrow\Delta^2=64\)
\(\Leftrightarrow\Delta=8\Leftrightarrow16-4m=8\Leftrightarrow m=2\) (tm)
Vậy để (p) và (d) cắt nhau tại 2 điểm phân biệt có tọa độ \(\left(x_1;y_1\right);\left(x_2;y_2\right)\) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)=-6\) thì m=2