Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m + 1)x - 4
a) Tìm m để đường thẳng (d) và parabol (P) cắt nhau tại hai điểm phân biệt
b) Gọi A (x1;y1) và B (x2;y2) là hai giaoo điểm của đường thẳng (d) với parabol (P). Tìm m để \(\sqrt{x_1}-\sqrt{x_2}=2\)
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m1.
Với m = 3, hãy:a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.2. Tìm các giá trị của m để:
1) (d) và (P) tiếp xúc nhau.
2) (d) cắt (P) tại hai điểm phân biệt
Trong mặt phẳng tọa độ Oxy, cho Parabol(P): y=x2 và đường thẳng (d): y=2(m+1)x-m2-4 (1), (m là tham số)
a) Tìm m để đường thẳng (d) đi qua A(0;-5)
b) Với giá trị nào của m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1; x2 thỏa mãn điều kiện: (2x1-1)(x22-2mx2+m2+3)=21
Bài 1 Cho parabol (P) và đt (d) y= -2x +1 -m
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -2
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2=x_1.x_2+8\)
cho parabol (P) y=x2 và dường thẳng y=mx+m+1
1) Tìm m để (p) và (d) cắt nhau tại hai điem phan biệt A và B
2) Gọi x1 x2 là hoanh dộ của A và B .Tìm m để |x1-x2|=2
Bài 2 Cho parabol (P) \(y=x^2\) và đt (d) \(y=2\left(m+1\right)x-m+4\)
a, Tìm tọa độ gđ của (P) VÀ (d) khi m = -5
b, Tìm m để (d) cắt (P) tại 2 điểm có hoành độ\(x_1,x_2\) sao cho \(A=|x_1-x_2|\) đạt GTNN và tìm GTNN đó
Cho h/s y= -X2 (P)
y=2X-m+1 (d)
a) tìm m để P và d tiếp xúc nhau
b) m để P và d cắt tại 2 điểm
Cho parabol (P) y=x2 và đường thẳng (d) y=2x+3-m2.Tìm m để (P) cắt (d) tại 2 điểm phân biệt A(xA;yA) và B(xB;yB) sao cho T=|xAxB-2(xA+xB)-2| đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
Cho (P):y=x\(^2\) và (d):y= -mx-m+1
a,Tìm m để (d) cắt (P) tại 2 điểm phân biệt.
b,Tìm m để (d) tiếp xúc với (P)