Cho ( O; R) và đường thẳng xy ko có điểm chung với đường tròn. Điểm A thuộc xy. Từ A kẻ tiếp tuyến AB với (O) ( B là tiếp điểm). QUa B kẻ các đường thẳng vuông góc với AO cắt AO tại K và cắt (O) tại điểm thứ 2 là C.
a) Tính OK nếu R = 5cm, OA = 10cm
b) Chứng minh AC là tiếp tuyến của (O)
c) Kẻ OH vuông góc xy tại H, BC cắt OH tại I. Chứng minh khi A di chuyển trên xy thì độ dài OI ko đổi
a: Xét ΔOBA vuông tại B có BK là đường cao
nên \(BO^2=OK\cdot OA\)
hay OK=2,5(cm)
b: Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác
Xét ΔBOA và ΔCOA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
DO đó: ΔBOA=ΔCOA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)