cho 2 đường tròn o và o tiếp xúc ngoài tại a. Trên tia Ax vuông góc với OO' lấy một điểm M. Vẽ tiếp tuyến MB với đường tròn (O),tiếp tuyến MC với đường tròn (O'), tia BO cắt tia CO tại N a. Chứng minh : MA=MB=MC b. Chứng minh tứ giác MBNC nội tiếp c. Chứng minh BC ⊥ MN
cho tam giác nhọn abc nội tiếp đường tròn (o).các đường cao ad,be,cf cắt nhau tại h.ad kéo dài cắt nhau tại điểm k(k khác a).đường thẳng ef cắt (o) tại m và n(f nằm giữa e và m). a,chứng minh d là trung điểm của hk. b,chứng minh oa vuông góc với mn. c,chứng minh am là tiếp tuyến của đường tròn ngoại tiếp tam giác mdh.
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax với đường tròn. Trên Ax lấy điểm K(AK≥R). Qua K kẻ tiếp tuyến KM tới đường tròn(O). Đường thẳng d vuông góc với AB tại O, cắt MB tại E.
a. chứng minh 4 điểm K,A,O,M thuộc một đường tròn
b. OK cắt AM tại I, chứng minh OI.OK=OA2
Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho đường tròn (O) đường kính BC, điểm M thuộc đường tròn (M khác C và B). Tiếp tuyến tại C của đường tròn (O) cắt tia BM tại N. Lấy A là điểm chính giữa cung nhỏ MC, tia CA cắt tia BM tại D. E là giao điểm AB và MC
a) Tính số đo của góc BMC
b) Chứng minh tứ giác ADME nội tiếp đường tròn
c) Chứng minh DM/DN=BM/BN
Cho ∆ ABC nhọn (AB < AC) nội tiếp đường tròn (O), các đường cao BE và CF cắt nhau tại H a) Chứng minh tứ iacs AEHF và BCEF nội tiếp b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O) (D là tiếp điểm, D thuộc cung nhỏ BC) Chứng minh ID2 = IB.IC c) DE.DF cắt đường tròn (O) tại M và N. Chứng minh NM//EF