b, Chứng minh : tam giác HEF ~ tam giác ABC
c, Gọi I là trung điểm BC. Chứng minh: I là tâm của đường tròn ngoại tiếp tam giác HEF.
b, Chứng minh : tam giác HEF ~ tam giác ABC
c, Gọi I là trung điểm BC. Chứng minh: I là tâm của đường tròn ngoại tiếp tam giác HEF.
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
1. Cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. Chứng minh AM là phân giác của góc CMD
b. Chứng minh tứ giác EFBM nội tiếp
c. Chứng minh AC2=AE.AM
d. Gọi giao điểm CB với AM là N; MD với AB là I. Chứng minh NI//CD
e. Chứng minh N là tâm đường tròn nội tiếp tam giác CIM
Help me ~ . ~
Cho nửa đường tròn tâm O đường kính AB=2R. Gọi C là 1 điểm tùy ý trên nửa đường tròn (O) sao cho AC>BC (A, B khác C). Qua O kẻ đường thẳng vuông góc với AB cắt dây AC tại D. a) Chứng minh tứ giác BCDO nội tiếp b) Chứng minh AD.AC=AO.AB c) Vẽ tiếp tuyến tại C của đường tròn (O). Từ D vẽ đường thẳng song song với AB cắt tiếp tuyến này tại E. Chứng minh AD//OE.
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
Cho (O;R) và một điểm A nằm ngoài đường tròn sao cho OA=2R. Các tiếp tuyến AB, AC( B, C là các tiếp điểm). Gọi H là giao điểm của OA với BC, AO cắt cung nhỏ BC tại H và cung lớn BC tại N. a/ chứng minh OA vuông góc với AC và R^2=OA*HM. b/ vẽ các tiếp tuyến bất kì A, D, E. Gọi K là trung điểm của DE. Chứng minh 5 điểm A, B, O, K, C thuộc một đường tròn
từ điểm A nằm ngoài đường trong (O) vẽ hai tiếp tuyến AB,AC với đương tròn (B,C là hai tiếp điểm ) Kẻ đường kính CD của đường tròn (O)
Chứng minh OA vuông góc BC
chứng minh BD // OA
kẻ BH vuông góc CD gọi K là giao điểm BH và AD Chứng minh K là trung điểm của BH
Cho (O;R).từ điểm A nằm ngoài (O) sao cho OA=2R vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm ) kẻ dây BC vuông góc OA a) chứng minh : AC là tiếp tuyến của đường tròn(O) b)Qua O vẽ đường vuông góc với OC cắt AB tại M. Chứng minh rằng: tam giác OMA tà tam giác cân c) gọi N là giao điểm của OA với đường tròn (O) ,tia MN Cắt AC tại K .chứng minh rằng:MK là tiếp tuyến của đường tròn (O) d) tính chu vi tam giác AMK theo R