ii. IO vuông góc với AC và BD
d) Chứng minh rằng: IA = IC; IB = ID; BC = AD. Tính T = \(IA^2+IB^2+IC^2+ID^2\)
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
B1: Chứng minh rằng trong một đường tròn, hai dây cung không cắt nhau AB và CD là song song khi và chỉ khi hai cung AC và BD bằng nhau B2: Cho hai đường tròn tiếp xúc trong tại điểm A và BC là 1 dây của đường tròn lớn đường tiếp xúc với đường tròn nhỏ tại điểm D. Chứng minh rằng AD là phân giác của góc BAC
Cho đường tròn tâm (o) đường kính AB. Vẽ dây CD vuông góc với AB tại M. Lấy điểm K trên cung nhỏ BD, AK cắt MD tại I, đường thẳng CD và BK cắt nhau tại N. Chứng minh NC . ND = NM . NI?
1. Cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. Trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. Chứng minh AM là phân giác của góc CMD
b. Chứng minh tứ giác EFBM nội tiếp
c. Chứng minh AC2=AE.AM
d. Gọi giao điểm CB với AM là N; MD với AB là I. Chứng minh NI//CD
e. Chứng minh N là tâm đường tròn nội tiếp tam giác CIM
Help me ~ . ~
cho nửa đường tròn (o; ab)c là điểm nằm giữa o và a ,đường thẳng vuông góc với ab . tại c cắt nửa đường tròn tại i , k là điểm bất kỳ nằm trên đoạn thẳng ci (k khác c và i) , tia ak cắt nửa đường tròn (o) tại m, tia bm cắt tia ci tại d. chứng minh: a, các tứ giác acmd, bckm nội tiếp đường tròn. b, ck.cd = ca.cb. c, gọi n là giao điểm của ad và đường tròn (o) chứng minh b,k,n thẳng hàng
Cho đường tròn (O;5cm) có đường kính AB, E thuộc đoạn thẳng AO (E khác A và O). Gọi H là trung điểm của AE, kẻ dây CD vuông góc với AE tại H.
a) Tính OH, CD biết AH=1cm
b) Chứng minh tứ giác ACED là hình thoi.
c) DE và BC cắt nhau tại I. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
từ điểm A ở bên ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC (B,C là hai tiếp điểm)
a) chứng minh các điểm A,B,O,C cùng thuộc một đường tròn
b) đoạn OA cắt đường tròn (O;R)tại M. chứng minh M là diểm chính giữa của cung BC và BM là tia phân giác của góc ABC
c)vẽ đường kính BD của (O;R). tiếp tuyến tai D của (O;R) cắt BC tại E, OE cắt AD tại N. chứng minh bốn điểm A,O,N,C nằm trên một đường tròn
b) nếu cho AO=2R thì diện tích tứ giác ABDC theo R là bao nhiêu
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất