a, CMR EF= AE+BF
b, Gọi OE cắt Ax tại M, BC cắt OF tại N. MCNO là hình gì?
c, AF cắt BE tại D. CMR CD//AE
d, CMR EF.CD=EC.FB
Các anh(chị), các bạn giúp mình với ạ. Mình cảm ơn!
a, CMR EF= AE+BF
b, Gọi OE cắt Ax tại M, BC cắt OF tại N. MCNO là hình gì?
c, AF cắt BE tại D. CMR CD//AE
d, CMR EF.CD=EC.FB
Các anh(chị), các bạn giúp mình với ạ. Mình cảm ơn!
Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Kẻ tiếp tuyến tại M là 1 điểm bất kỳ thuộc đường tròn. Tiếp tuyến này cắt Ax, By thứ tự tại C, D. Chứng minh đường tròn đường kính CD tiếp xúc với AB
CHo nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.TỪ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E;MB cắt nửa (O) tại D (D khác B)
a/AMCO và AMDE là các tứ giác nội tiếp
b/MNCD là tứ giác nội tiếp
Câu 3: Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa
đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.
b) Chứng minh .
c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH.
BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn ( M ≠ A và B), kẻ tiếp tuyến với nửa đường tròn cắt các tia Ax và By theo thứ tự tại C và D
a, C/m: ΔCOD vuông
b, C/m: AC.BD = R2
c, Kẻ MH ⊥ AB. C/m: BC đi qua trung điểm của MH
cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M không trùng với A,B ). trong nửa mặt phẳng chứa nửa đường tròn có bờ là đường thẳng AB kẻ tiếp tuyến Ax. đường thẳng BM cắt x tại I, tia phân giác góc IAM cắt nửa đường tròn tâm O tại E, cắt IB tại F, đường thẳng BE cắt AM tại K.
a) cm 4 điểm F,E,K,M cùng thuộc 1 đường tròn
b) cm AI2 =IM.IB
cho nửa đường tròn tâm o đường kính ab cố định. gọi c là điểm chính giữa của cung ab và m là điểm bất kì thuộc cung ac. bm cắt oc tại d. tiếp tuyến với nửa đường tròn tâm o tại điểm m cắt đường cd tại điểm e.
Cm:a)bd,bm ko có giá trị phụ thuộc vào vị trí điểm m
b)ed=em.
Cho nửa đường tròn (O;R),đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn OC lấy điểm E (E khác O,C). Tia AE cắt đường tròn (O) tại M. Tiếp tuyến tại M của đường tròn (O) cắt OC ở D. Gọi K là giao điểm của BM và OC
a) Chứng minh tứ giác OBME nội tiếp 1 đường tròn.
b) Chứng minh tam giác MDE cân và BM.BK không phụ thuộc vào vị trí của điểm E.
c)Tìm vị trí của điểm E để MB=1/2MA
cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
Cho đường tròn tâm O, cát tuyến (d) cắt đường tròn tại A và B, C thuộc (d) sao cho A nằm giữa C và B. từ C vẽ tiếp tuyến CN với đường tròn tại N (N thuộc cung lớn AB), CO cắt đường tròn tại E và F. Từ N hạn NI vuông góc với CO tại I. Chứng minh góc EIA = góc OAB