Cho nửa đường tròn (O) đường kính MN. Kẻ tiếp tuyến Mx với nửa đường tròn. Gọi E là điểm trên nửa đường tròn sao cho cung EM bằng cung EN, F là một điểm tuỳ ý trên cung EM (F khác E và M). Các tia NE, NF cắt tia Mx theo thứ tự là P và Q.
a) Chứng minh tam giác NMP vuông cân.
b) Chứng minh tứ giác EFQP nội tiếp.
a, Vì Mx lần lượt là tiếp tuyến (O)
=> ^PMN = 900
Ta có ^EPM = ^EMN ( cùng phụ ^PME )
Lại có cung ME = cung EN => ME = EN
=> tam giác EMN vuông cân tại E vì ^MEN = 900 ( góc nt chắn nửa đường tròn)
=> ^MPE = ^MNP mà ^PMN = 900
Vậy tam giác PMN vuông cân tại M
b, Ta có ^EFN = ^EMN ( góc nt chắn cung EN )
mà ^QPE = ^EMN (cmt)
=> ^NFE = ^QPE mà ^NFE là góc ngoài đỉnh F
Vậy tứ giác EFQP là tứ giác nt 1 đường tròn