Cho nửa đường tròn ( O ; AB/2 ) . Từ A , B kẻ hai tiếp tuyến Ax , By ( Ax , By cùng nằm trên một nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn ( O ; AB / 2 ) . Qua một điểm M thuộc nửa đường tròn này , kẻ tiếp tuyến thứ ba với nửa đường tròn ( O ; AB/2 ) cắt tiếp tuyến Ax , By lần lượt tại C và D . Gọi E và F lần lượt là giao điểm của các đường thẳng AM và OC ; MB và OD
1. Chứng minh : CD = AC + BD
2 . Chứng minh EF // AB
3. Gọi N là giao điểm của hai đường thẳng AD và BC
Chứng minh MN vuông góc AB