cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chưa nửa đường tròn vẽ tiếp tuyến Ax và By . Điểm M thuộc (O) sao cho tiếp tuyến tại M cắt Ax, By lần lượt tại C, D.
a) Cm: CD= AC+BD
b) Cm: OC vuông AM
c) Gọi E là giao điểm AM và Oc, F là giao điểmcủa BM và OD . Tứ giác MÈO là hình gì? Tại sao?
Giúp mình với ;-; làm ơn
Cho nửa đường tròn O bán kính R, đường kính AB. Từ A và B vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Lấy M là một điểm tùy ý trên nửa đường tròn, vẽ tiếp tuyến tại M cắt Ax tại C, By tại D. Gọi A' là giao điểm của BM với Ax, B' là giao điểm của AM với By. Chứng minh rằng:
a, ΔA′AB∼ΔABB′,AA′.BB′=AB.
b, CA = CA' và DB = DB'.
c, Ba đường B'A', DC, AB đồng qui khi góc AOM khác góc vuông
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E. a) AC cắt DO tại M, BC cắt OE tại N. Tử giác CMON là hình gì? Vì sao? b) Chứng minh rằng MO.DM + ON.NE không đổi c) AN cắt CO tại điểm H. Điểm H di chuyển trên đường nào khi C di chuyển trên nửa đường tròn (O; R).
Giúp mình với ;-; làm ơn, làm hộ mik câu c thui cũng đc ;-;
Cho nửa đường tròn O bán kính R, đường kính AB. Từ A và B vẽ hai tiếp tuyến Ax, By với nửa đường tròn. Lấy M là một điểm tùy ý trên nửa đường tròn, vẽ tiếp tuyến tại M cắt Ax tại C, By tại D. Gọi A' là giao điểm của BM với Ax, B' là giao điểm của AM với By. Chứng minh rằng:
a, ΔA′AB∼ΔABB′,AA′.BB′=AB.
b, CA = CA' và DB = DB'.
c, Ba đường B'A', DC, AB đồng qui khi góc AOM khác góc vuông
Cho đường tròn (O) đường kính AB, vẽ tiếp tuyến Ax và By (Ax, By cùng nằm trên nửa mặt phẳng bờ AB). M ϵ Ax; Từ M vẽ tiếp tuyến MQ (Q là tiếp điểm), MQ cắt By tại E.
a) Chứng minh: AM + BE = ME
b) Chứng minh: OM ┸ OE
c) Chứng minh: AM.BE = OB
Cho nửa đường tròn (O) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ hai tiếp tuyến Ax và By với (O). Lấy M bất kì trên (O). Kẻ tiếp tuyến thứ 3 với nửa đường tròn tại M cắt Ax và By tại C và D.
1) CMR: Tam giác COD là tam giác vuông và tích AC.BD không phụ thuộc vào vị trí của M.
2) AM cắt OC tại E, BM cắt OD tại F. Tứ giác MÈO là hình gì?
3) Tứ giác AEFO; ADFB là hình gì?
4)CMR: EC.EO + FO.FD = R2
5) CMR: AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.
6) Xác định vị trí của M để chu vi; diện tích hình thang ACDB đạt giá trị nhỏ nhất.
7) Tia BM cắt Ax tại K. CMR: C là trung điểm AK.
8) Kẻ đường cao MH của tam giác AMB. MH cắt BC tại N; CMR: N là trung điểm MH và A, N, D thẳng hàng.
Cho đường tròn (O, R) đường kính AB. Qua A và B vẽ các tiếp tuyến Ax và By
với đường tròn (O). Một đường thẳng qua O cắt Ax và By tại M và P. Qua O vẽ một
đường thẳng vuông góc với MP cắt By tại N.
a. Chứng minh MN = NP.
b. Chứng minh MN là tiếp tuyến của đường tròn (O).
c. Chứng minh tích AM.BN không đổi.
d. Tìm diện tích nhỏ nhất của tứ giác AMNB.
please giúp mình với ạ
BT: Cho (O;R) đường kính AB, tia tiếp tuyến Ax. Trên tia Ax lấy diểm M, đoạn thẳng MO cắt đường tròn tại I
a, Tính số đo cung nhỏ AI và cung lớn AI khi AM=R.√3
b, Vẽ tiếp tuyến MC với đường tròn( C là tiếp điểm). MC cắt tiếp tuyến tại B của đường tròn tại N. Chứng minh góc MON=90 độ và AM.BN=R^2
c, Chứng minh: I là tâm đường tròn nội tiếp tam giác MAC
Cứu tui, tui đang cần gấp!!