Cho nửa(O;R) đường kính AB kẻ tiếp tuyến Ax;By với nửa O lấy M tùy ý trên nửa O tiếp tuyến tạo M cắt Ax;By tại C và D chứng minh COD=90 và CD=AC+BD b) AD cắt BC tại N chứng minh MN song song AC c) MN cắt AB tại H chứng minh MN là trung điểm MH
trên nữa đường tròn tâm O đường kính AB, lấy điểm M. Vẽ đường tròn tâm M tiếp xúc với AB tại H. Vẽ Tiếp tuyến AC và BD của M với C và D là hai tiếp điểm
1.tìm hai góc so le trong bằng nhau để chứng minh OM//BD,OM//AC.
2.chứng minh C,M,D thẳng hàng và đường thẳng CD tiếp xúc với O
3.giả sử CD=2a(2alpha). tính AC.BD theo a
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
3) cho nửa (O) đường kính AB= 2R. từ A và B kẻ 2 tiếp tuyến Ax, By. qua M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ã, By lần lượt ở C và D. các đường thẳng AD và BC cắt nhau tại N
a) c/m: \(AC+BD=CD\)
b) c/m: \(\widehat{COD}=90^0\)
c) c/m: \(AC.BD=\dfrac{AB^2}{4}\)
d) c/m: \(OC//BM\)
e) c/m: AB là tiếp tuyến của đường tròn đường kính CD
f) c/m: MN ⊥AB
g) xác đinh vị trí của M để chu vi tg ABCD đạt giá trị nhỏ nhất
giúp mk vs ạ mk cần gấp
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C, D
a) Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB
b) Tìm vị trí của điểm M để hình thang ABCD có chu vi nhỏ nhất
c) Tìm vị trí của C, D để hình thang ABDC có chu vi bằng 14 cm, biết AB = 4cm
Cho nửa đường tròn (O) đường kính AB và C nằm trên nửa đường tròn sao cho. Tia AC cắt tiếp tuyến kẻ từ B với nửa đường tròntại D.
a, Chứng minh \(BC^2\).= AC . CD
b, Cho bán kính đường tròn (O) là 4cm. Tính BD.
Cho đường tròn (O) đường kính AB, lấy C thuộc (O) tiếp tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
a) Chứng minh: MC là tiếp tuyến của (O)
b)Chứng minh: MO vuông góc AC tại trung điểm I của AC
cho đương tròn (O,R)và một điểm A nằm ngoài đường tròn (O,R).Từ A vẽ hai điểm tiếp tuyến AB,AC của (O,R) ( B,C là tiếp điểm).Từ B vẽ đường kính BD của (O ,R), đường thẳng AD cắt (O,R) tại E (khác D) . CM 4 điểm A,B,C,O cùng thuộc 1 đường tròn