cho ngũ giác ABCDE có các cạnh bằng nhau và góc A=góc B=góc C.
a, chứng minh tứ giác ABCD là hình thang cân
b,chứng minh ngũ giác ABCDEF là ngũ giác đều
cho ngũ giác đều , điểm P nằm trong ngũ giác sao cho tam giác DPE cân .Tính góc APC ?
Cho ngũ giác đều có điểm P nằm trong ngũ giác và tam giác DPE đều ,tính góc APC?
HELP!!!!
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy