Cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\dfrac{1}{ab+a+2}+\dfrac{1}{bc+b+2}+\dfrac{1}{ca+c+2}\le\dfrac{3}{4}\)
Cho a,b,c là số dương thỏa mãn abc=1
CMR \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+3\ge2\left(a+b+c\right)\)
Cho a,b,c là các số thực dương thoar mãn: a+b+c=3
\(CMR:\dfrac{a+1}{1+b^2}+\dfrac{b+1}{1+c^2}+\dfrac{c+1}{1+a^2}\ge3\)
Cho a,b,c là số dương thỏa mãn a+b+c=3. CMR
a/ \(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge\dfrac{3\sqrt{2}}{2}\)
b/ \(\sqrt{\dfrac{a^3}{b+3}}+\sqrt{\dfrac{b^3}{c+3}}+\sqrt{\dfrac{c^3}{a+3}}\ge\dfrac{3}{2}\)
Cho a,b,c là số dương. CMR
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1 . CMR \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Cho các số a,b,c dương thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+a+b+c\ge4\left(\dfrac{a}{a^4+1}+\dfrac{b}{b^4+1}+\dfrac{c}{c^4+1}\right)\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)