1)tìm m để đường thẳng d: \(y=2x-2m\) cắt đồ thị hàm số (C) :\(y=\frac{2x-m}{mx+1}\) tại hai điểm phân biệt A,B và cắt Ox,Oy tại M,N sao cho \(S_{OAB}=3S_{OMN}\)
2) Trong kgian tọa độ Oxyz có 2 đường thẳng có pt (d1) :\(\begin{cases}x=1-t\\y=t\\z=1+t\end{cases}\) và (d2) \(\begin{cases}x=3+4t\\y=5-2t\\z=4+t\end{cases}\) . Lập pt mp (P) đi qua (d1) và (P)//(d2)
Trong không gian Oxyz cho M(1;6;-7) và N(5;0;-1).Cho mặt phẳng (P): x + by +cz +d = 0; biết (P) // (Q) x+y-3z+4= 0 và (P) cách đều hai điểm M, N. Tổng b +c +d bằng
A. 20. B. -20. C. 4. D. 3.
Cho mp (P): 3x – y – z + 2 = 0
a) Cho điểm C(-3; 2; 4). Tính d(C; (P))
b) Tìm điểm M thuộc Ox sao cho khoảng cách từ M đến O và đến mp(P) là bằng nhau
c) Viết pt mp (Q) song song với (P) và (Q) cách A(-1; 3;2) một khoảng bằng 5
d) Viết pt mp (Q) song song với (P) và (Q) cách B(0; 1; -4) một khoảng bằng khoảng cách từ B đến mp(P)
e) Viết pt mp(P) song song và cách mp(Q) một khoảng bằng 3
f) Cho (P1): 6x – 2y – 2z +9. Tính khoảng cách giữa (P) và (P1)
g) Cho (P2): 3x – y – z – 10 = 0. Viết pt mp song song và cách đều (P) và (P2)
cho mp (P) x+y-z+3=0 và đường thẳng d:\(\begin{cases}x=3+2t\\y=-2-3t\\z=1-4t\end{cases}\) . Gọi I là giao điểm của d và (P). Viết pt đường thẳng \(\Delta\) nằm trg (P) sao cho \(\Delta\) vuông góc với d.Khoảng cách từ I đến \(\Delta\) bằng \(\sqrt{29}\)
Trong không gian với hệ tọa độ OXYZ cho pt mặt phẳng (P) : \((1-m^2).2nx+4mny+(1+m^2)(1-n^2)z+4(m^2.n^2+m^2+n^2+1)=0\) với m,n là tham số thực tùy ý. biết mp(P) luôn tiếp xúc với 1 mặt cầu cố định . tìm bán kính của mặt cầu đó.
Cho (P): 2x + y – 4 = 0 và (Q): 3y + z +2 = 0 cắt nhau theo giao tuyến là đường thẳng d. Viết ptmp(R) biết
a) (R) vuông góc với d và qua O(0; 0; 0)
b) (R) chứa d và qua M(1;-1;3)
c) (R) chứa d và qua N(7;-1;1)
d) (R) chứa d và song song với AB biết (-1; 1; 0) và B(2; -1; 2)
Trong không gian Oxyz cho I(3; 1;-1) và M(1; 4;2). Mặt phẳng (P) qua M và tiếp xúc với mặt cầu tâm I bán kính IM. Phương trình (P) là:
A. 2x-3y-3z+16=0. B. -2x + 3y + 3z +16 = 0. C. 3x + y – z -5 =0. D. x+4y+z-18=0.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(\Delta:\left\{{}\begin{matrix}x=3+t\\y=-1-t\\z=-2+t\end{matrix}\right.,\left(t\in R\right)\); điểm \(M\left(1;2;-1\right)\) và mặt cầu \(\left(S\right):x^2+y^2+z^2-4x+10y+14z+64=0\). Gọi \(\Delta'\) là đường thẳng đi qua M, cắt \(\Delta\) tại A và cắt mặt cầu \(\left(S\right)\) tại B sao cho \(\frac{AM}{AB}=\frac{1}{3}\) (điểm B có hoành độ là số nguyên). Mặt phẳng trung trực đoạn AB có phương trình là:
A. \(2x+4y-4z-19=0\)
B. \(3x-6y-6z-62=0\)
C. \(2x-4y-4z-43=0\)
D. \(3x+6y-6z-31=0\)
cho hình chóp SABCD đáy ABCD là hình thang vuông tại A và B, AB=AC=a, AD=2a, SA vông góc với mp(ABCD), SA=2a. M là 1 điểm thuộc AB, mp(α) qua M và vuông góc với AB
a) Tìm thiết diện (α) với hình chóp SABCD. Thiết diện là hình gì?
b) Đặt AM =x (0<x<a). Tính diện tích thiết diện