góc ASC=1/2(sđ cung AB-sđ cung CM)
=1/2(sđ cung AC-sđ cung CM)
=1/2*sđ cungAM
góc MCA=1/2cung AM
=>góc ASC=góc MCA
góc ASC=1/2(sđ cung AB-sđ cung CM)
=1/2(sđ cung AC-sđ cung CM)
=1/2*sđ cungAM
góc MCA=1/2cung AM
=>góc ASC=góc MCA
Cho một đường tròn (O) và hai dây cung bằng nhau AB=AC. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của hai đường thẳng AM và BC. Chứng minh góc ASC= góc MCA
Cho đường tròn (O) và hai dây AB, AC bằng nhau. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của AM và BC. Chứng minh \(\widehat{ASC}=\widehat{MCA}.\)
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lấy một điểm M. Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S. Chứng minh ES = EM.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S a. chứng minh ES=EM b. biết góc ESM=65 độ .tính sđ cung BM c.biết sđ cung BM =40 độ . tính góc E
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho AB và CD là hai đường kính vuông góc của đường tròn (O). Trên cung nhỏ BD lây một điểm M . Tiếp tuyến tại M cắt tia AB ở E, đoạn thẳng CM cắt AB ở S
a. chứng minh ES=EM
b. biết góc ESM=65 độ tính sđ cung BM
c.biết sđ cung BM =40 độ . tính góc E
Cho đường tròn (O;AB). Lấy điểm C sao cho số đo cung AC=111 độ. Từ một điểm D trên OA kẻ đường thẳng vuông góc với AB cắt tiếp tuyến tại C ở điểm E, cắt AC tại I và cắt đường tròn (O) tại M và N.
a) Tính số đo góc ABC
b) Chứng minh tam giác IEC cân.
Trên một đường tròn, lấy liên tiếp ba cung AC, CD, DB sao cho số đo cung AC bằng số đo cung CD bằng số đo cung DB và bằng 60o. Hai đường thẳng AC và BD cắt nhau tại E. Hai tiếp tuyến của đường tròn tại B và C cắt nhau tại T. Chứng minh rằng:
a) \(\widehat{AEB}=\widehat{BTC}.\)
b) CD là tia phân giác của \(\widehat{BCT}.\)