TH1: K mở =>R0 nt R2
\(=>U1=I0.R0\left(V\right)\)
\(=>Ubd=I0.Rtd=\dfrac{U1}{R0}\left(R0+R2\right)=>Ubd=U1+\dfrac{U1.R2}{R0}\)
\(=>\dfrac{U1.R2}{R0}=Ubd-U1=>R0=\dfrac{U1.R2}{Ubd-U1}\)
Th2: R0 nt (R1//R2)
\(=>U0=U2\)
\(=>Ubd=U2+I0.R12=U2+\dfrac{U2}{R0}.\dfrac{R1.R2}{R1+R2}\)
\(=>Ubd=U2+\dfrac{U2}{R0}.\dfrac{\dfrac{R2}{4}.R2}{\dfrac{R2}{4}+R2}=U2+\dfrac{U2}{R0}.\dfrac{\dfrac{R2^2}{4}}{\dfrac{5R2}{4}}\)
\(=U2+\dfrac{U2}{R0}.\dfrac{R2}{5}=>Ubd=U2+\dfrac{U2.R2}{5R0}\)
\(=>R0=\dfrac{U2.R2}{5\left(Ubd-U2\right)}\)
\(=>\dfrac{U1.R2}{Ubd-U1}=\dfrac{U2.R2}{5\left(Ubd-U2\right)}\)
\(=>Ubd=\dfrac{4U1U2}{5U1-U2}\)