Cho tam giác ABC có AB = 18 cm, AC = 12 cm, BC = 9 cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3 cm. Qua D kẻ đường thẳng song song với AB cắt tia AC tại E. Gọi F là giao điểm của AD và BE. Tính: a) Độ dài CE, DE
1/cho tam giác ABC đường trung tuyến AM , điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm BI và AC chứng minh BF song song BC
2/cho tamAOB có AB=18 OA=12 OB=9. Trên tia đối tia OB lấy điểm D sao cho OD=3. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm AD và BC. Tinh: a)Độ dài OC, CD b)Tỉ số FD/FA
cho tam giác ABC , AB= 10 cm , AC = 15cm , AM là trung tuyến. Trên AB lấy D sao cho AD = 4cm , trên AC lấy E sao cho CE = 9cm. gọi I là giao điểm DE và AM , cmr :
a) DE//BC
b) I là trung điểm DE
c) Gọi O là giao điểm của BE và CD , chứng minh A , O , M thẳng hàng
Cho tam giác AOB có AB = 18cm, OA = 12cm, OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở C. Gọi F là giao điểm của AD và BC. Tính tỉ số \(\dfrac{FD}{FA}\)
Cho tam giác ABC có AB = 3,6 cm , AC = 4,8 cm trên AB lấy M trên AC lấy N sao cho AM = 3cm ,AN =4cm .Chứng minh
a, MN//BC
b, Gọi D là trung điểm BC . K là giao điểm của AD và MN . Chứng minh K là trung điểm MN
Cho tam giác ABC có AB = 3,6 cm , AC = 4,8 cm trên AB lấy M trên AC lấy N sao cho AM = 3cm ,AN =4cm .Chứng minh
a, MN//BC
b, Gọi D là trung điểm BC . K là giao điểm của AD và MN . Chứng minh K là trung điểm MN
giúp mik vs
BT1: Cho tam giác ABC, trung tuyến AM.Lấy điểm N trên cạnh AB, điểm Q trên cạnh AC sao cho NQ// BC. Gọi K là giao của AM và NQ. Cmr: NK=KQ.
BT2: Cho hình bình hành ABCD, trên tia đối của tia CB lấy điểm I, AI cắt BD,
DC lần lượt ở K,G. Chứng minh:
a, CI/IB=IG/AT
b, DG/DC=DK/KB
c, AK.BI = KI.AD
d, AK2= KG.KI
Cho hình thang ABCD đáy AB và CD (AB<CD) gọi O là giao điểm hai đường chéo m là giao điểm da và CB đường thẳng MO cắt AB và CD thứ tự ở N và K
a, cm AN. KC = BN . KD
b, cm N và K là trung điểm của AB và CD.
Cho tam giác ABC, lấy điểm M thuộc BC và N thuộc AM. Gọi I,K lần lượt là trung điểm của BN và CN. Tia MI cắt AB tại E, tia MK cắt AC tại F. Chứng minh EF song song BC