Cho đường tròn tâm O, bán kính R. M là điểm nằm ngoài đường tròn. Vẽ tiếp tuyển MA của đường tròn (A là tiếp điểm). Vẽ đường kính AB của (O), MB cắt (O) tại C. Gọi D là trung điểm của dây BC. a) Chứng minh 4 điểm: M, A, O, D cùng nằm trên một đường tròn. b) Chứng minh 4Rẻ=BC BM
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C năm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O)
Cho (O;R) và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN với (O) (M,N tiếp điểm). Trên nửa mặt phẳng bờ AO chứa N vẽ cát tuyến ABC của (O) sao cho AB < AC, gọi I là trung điểm của BC, MN cắt AC tại K.
a) C/m AMOI là tứ giác nội tiếp.
b) C/m OA vuông góc với MN tại H và AK.AI=AM2
c) AO cắt (O) tại 2 điểm P,Q ( AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H và vuông góc với MD cắt MP tại E. C/m △MHE ∼ △QDM và P là trung điểm của ME.
Giúp mình với ạ, Cảm ơn!
Từ điểm A nằm ngoài (O;R) vẽ các tiếp tuyến AM,AN (M,N là 2 điểm). MN cắt AO tại H. a) chứng minh 4 điểm A,M,O,N cứng thuộc đường tròn. Xác định tâm I và bán kính của đường tròn. b) chứng minh OA vuông góc MN tại H là trung điểm của MN. c) chứng minh AM2=AH.AO=OA2-R2. d) vẽ đường kính MD của (O). Chứng minh ND song song OA và 2OH=ND
cho đường tròn (O) tâm O, đường kính AB. lấy M là trung điểm của OB, vẽ đường (M) tâm M bán kính MB. gọi d là đường thẳng đi qua M và vuông góc với AB. trên (O) lấy điểm D sao cho dây BD cắt d tại N (D không trùng với A và N ). đường thẳng AN cắt (O) tại điểm thứ hai là C, đường thẳng OC cắt (M) tại điểm thứ hai là P a chứng minh tứ giác ADNM là tứ giác nội tiếp b chứng minh cung BC của (O) và cung BP của (M) có độ dài bằng nhau c chứng minh góc MCD = góc AOD
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Cho đường tròn (O) A thuộc (O) kẻ tia Ax là tiếp tuyến của đường tròn (O) tại A trên tia Ax lấy điểm M cố định.Đường thẳng d thay đổi đi qua M và không đi qua tâm O cắt (O) tại 2 điểm B và C (B nằm giữa C và M góc ABC nhỏ hơn 90 độ) gọi I là trung điểm BC
1. Chứng minh 4 điểm A O I M thuộc cùng 1 đường tròn
2. Vẽ đường kính AD của (O) gọi H là trực tâm của tam giác ABC chứng minh H đối xứng với D qua I tính HA biết tâm O cách đường thẳng d là 2cm
3. Chứng minh H và A cùng thuộc 1 đường tròn cố định khi đường thẳng d thay đổi
từ một điểm m ở ngoài đường tròn tâm O có bán kính r vẽ hai tiếp tuyến MA và MB (A'B là tiếp điểm) Gọi H là giao điểm OM và AB .
đường thẳng MO cắt tâm O tại I và c i nằm giữa m và O chứng minh Ai là tia phân giác của góc