Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) Chứng minh : \(x^{2013}+y^{2013}=0\)
Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) Chứng minh : \(x^{2013}+y^{2013=0}\)
cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) tính \(A=x^{2014}-y^{2014}+1\)
Cho x,y là các số thỏa mãn \(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{y^2+2013}+y\right)=2013\)
Hãy tính giá trị của biểu thức x+y
Bài 2 Cho hình chữ nhật ABCd có cạnh AB=a ,Bc=a\(\sqrt{2}\) . Gọi M là trung điểm của cạnh BC. Chứng minh Am vuông góc với BD
Bài 1 Phân tích đa thức thành nhân tử
\(x^4-4x^2+12x-9\)
Bài 2 Cho x,y là các số thỏa mãn \(\left(\sqrt{x^2+2013+x}\right)\left(\sqrt{y^2+2013+y}\right)=2013\)
Hãy tính giá trị của biểu thức x+y
Bài 3
\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
a) rút gọn
b) tính A khi a=3+2\(\sqrt{2}\)
1. Cho 3 số dương x,y,z thỏa mãn 1/x+ 1/y+ 1/z =1 . CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
2. tìm a,b nguyên dương sao cho \(a+b^2⋮a^2b-1\)
3. Cho 3 số x,y,z thỏa mãn đồng thời:
\(3z-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
Tính gtri P= \(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
4. Cho a,b,c là các số >1. Tính Min P= \(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\)
@Akai Haruma chị giúp e làm 4 bài này đc k ạ!! E cảm ơn
Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\). Tính giá trị của \(\left(x+y\right)\)
Những câu hỏi hay :
Cho 3 số x,y,z thõa mãn : \(\left\{{}\begin{matrix}x+y+z=2020\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2020}\end{matrix}\right.\)
Tính giá trị của biểu thức : \(P=\left(x^{2009}+y^{2009}\right)\left(y^{2011}+z^{2011}\right)\left(z^{2013}+x^{2013}\right).\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)