Biểu thức này chỉ có min, không có max
\(x^2+y^2+z^2=xy+xz+10yz\)
\(\Leftrightarrow\dfrac{3x^2}{4}+\left(\dfrac{x}{2}-y-z\right)^2=12yz\)
\(\Rightarrow12yz\ge\dfrac{3}{4}x^2\Rightarrow yz\ge\dfrac{x^2}{16}\)
\(\Rightarrow P\ge\dfrac{x^3}{2}-\dfrac{3x^3}{2yz}\ge\dfrac{x^3}{2}-\dfrac{3x^3}{\dfrac{x^2}{8}}=\dfrac{x^3}{2}-24x\)
Xét hàm \(f\left(x\right)=\dfrac{x^3}{2}-24x\) với \(x>0\Rightarrow f'\left(x\right)=\dfrac{3}{2}x^2-24=0\Rightarrow x=4\)
Từ BBT ta thấy \(\min\limits_{x>0}f\left(x\right)=f\left(4\right)=-64\)
\(\Rightarrow P_{min}=-64\) khi \(\left(x;y;z\right)=\left(4;1;1\right)\)