Bài 4: Liên hệ giữa phép chia và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê phương thảo

Cho K=\((\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}):(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1})\)

a) rút gọc K

b) Tính K khi a =\(3+2\sqrt{2}\)

c)tìm a sao cho K <0

Cold Wind
12 tháng 7 2017 lúc 15:28

a) \(K=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\sqrt{a}-1}{a-1}-\dfrac{2}{a-1}\right)=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{a-1}{\sqrt{a}-3}=\dfrac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)

b) Ta có: \(\sqrt{a}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}+1\right|=\sqrt{2}+1\)

Thay \(a=3+2\sqrt{2}\)\(\sqrt{a}=\sqrt{2}+1\) vào K:

\(K=\dfrac{\left(\sqrt{2}+1+1\right)\left(3+2\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1-3\right)}=\dfrac{\left(\sqrt{2}+2\right)\left(2\sqrt{2}+2\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-2\right)}=\dfrac{2\left(\sqrt{2}+2\right)}{\sqrt{2}-2}=\dfrac{2\left(1+\sqrt{2}\right)}{1-\sqrt{2}}\)

c) Đk: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\\a\ne9\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\sqrt{a}+1>0\\\sqrt{a}>0\end{matrix}\right.\)

Nên, để K<0 thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1>0\\\sqrt{a}-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1< 0\\\sqrt{a}-3>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>1\\\sqrt{a}< 3\end{matrix}\right.\\\left\{{}\begin{matrix}a< 1\\\sqrt{a}>3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>1\\a< 9\end{matrix}\right.\\\left\{{}\begin{matrix}a< 1\\a>9\end{matrix}\right.\left(vn\right)}\end{matrix}\right.\)\(\Leftrightarrow1< a< 9\)

Kl: \(1< a< 9\)

chỗ công thức bị lỗi bạn tự giải nhé (dễ mà ^^! chỗ căn bình phương 2 vế lên thôi ), nãy giờ cứ sửa đi sửa lại mệt quá T_T!!


Các câu hỏi tương tự
tran yen ly
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Nguyễn Trần Duy Thiệu
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Trai Vô Đối
Xem chi tiết
Lữ Diễm My
Xem chi tiết
illumina
Xem chi tiết
WHY.
Xem chi tiết