\(y'=-\frac{1}{x^2}< 0\) ; \(\forall x\ne0\)
\(\Rightarrow\) Hệ số góc của tiếp tuyến (H) luôn âm do đó ko tồn tại điểm M như yêu cầu
\(y'=-\frac{1}{x^2}< 0\) ; \(\forall x\ne0\)
\(\Rightarrow\) Hệ số góc của tiếp tuyến (H) luôn âm do đó ko tồn tại điểm M như yêu cầu
Viết phương trình tiếp tuyến của đồ thị của các hàm số :
a) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ \(x=0\)
b) \(y=x^3-3x^2+2\) tại điểm \(\left(-1;-2\right)\)
c) \(y=\sqrt{2x+1}\) , biết hệ số góc của tiếp tuyến là \(\dfrac{1}{3}\)
d) \(y=x^4-2x^2\) tại điểm có hoành độ \(x=-2\)
e) \(y=\dfrac{2x+1}{x-2}\) biết hệ số góc của tiếp tuyến bằng \(-5\)
Viết phương trình tiếp tuyến của đường hyperbol \(y=\dfrac{1}{x}\) ?
a) Tại điểm \(\left(\dfrac{1}{2};2\right)\)
b) Tại điểm có hoành độ bằng \(-1\)
c) Biết rằng hệ số góc của tiếp tuyến bằng \(-\dfrac{1}{4}\)
Cho hàm số y=x^2-3x
Viết phương trình tiếp tuyến của (C) tại điểm M(2;-2)
Cho hàm số \(y=x-\dfrac{1}{x}\) . Tìm điểm M thuộc đồ thị hàm số sao cho khoảng cách từ gốc tọa độ đến tiếp tuyến tại M bằng \(\dfrac{1}{2}\)
Viết phương trình tiếp tuyến của đường cong \(y=x^3\)
a) Tại điểm \(\left(-1;-1\right)\)
b) Tại điểm có hoành độ bằng 2
c) Biết hệ số góc của tiếp tuyến bằng 3
Cho hàm số y = \(-x^2+3x-2\) có đồ thị (P)
a,Tính đạo hàm của hàm số tại điểm \(y^'\) \(x_0\) thuộc R
b,Viết phương trình tiếp tuyến của (P) tại điểm có hoành độ \(x_0\)=2
c,Viết phương trình tiếp tuyến của (P) tại điểm có tung độ \(y_0\)=0
d,Viết phương trình tiếp tuyến của (P), biết tiếp tuyến vuông góc với đường thắng \(y^'=x+3\)
Cho hàm số \(y=x+1+\dfrac{1}{x-1}\) (C) . Tìm các điểm A thuộc đồ thị (C) sao cho tiếp tuyến tại A cắt trục hoành, trục tung theo thứ tự M,N (M,N khác O) sao cho ON=2OM
Cho hàm số \(y=\dfrac{3x-1}{x-1}\) và điểm I(1;3) Tìm các tiếp tuyến của đồ thị hàm số biết tiếp tuyến đó cắt 2 đường thẳng x=1 và y=3 tạo thành 2 điểm A,B sao cho tam giác IAB cân tại I
Cho hàm số y=f(x)= 2x^3-3x^2+9x-4. Viết phương trình tiếp tuyến của đồ thị hàm số y.Biết :
a) là giao điểm của nó với parabol y= -x^2+8x-3
b) Là giao điểm của nó với (C) y= x^3 -4x^2+6x-7