Cho hàm số y = \(-x^2+3x-2\) có đồ thị (P)
a,Tính đạo hàm của hàm số tại điểm \(y^'\) \(x_0\) thuộc R
b,Viết phương trình tiếp tuyến của (P) tại điểm có hoành độ \(x_0\)=2
c,Viết phương trình tiếp tuyến của (P) tại điểm có tung độ \(y_0\)=0
d,Viết phương trình tiếp tuyến của (P), biết tiếp tuyến vuông góc với đường thắng \(y^'=x+3\)
1. Cho hàm số y = x^3 -3x^2 +2x +2 có đồ thị (C). Viết pt tiếp tuyến denta của (C) biết rằng denta vuông góc với đg thẳng d : x -y -3=0
Viết phương trình tiếp tuyến của đồ thị của các hàm số :
a) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ \(x=0\)
b) \(y=x^3-3x^2+2\) tại điểm \(\left(-1;-2\right)\)
c) \(y=\sqrt{2x+1}\) , biết hệ số góc của tiếp tuyến là \(\dfrac{1}{3}\)
d) \(y=x^4-2x^2\) tại điểm có hoành độ \(x=-2\)
e) \(y=\dfrac{2x+1}{x-2}\) biết hệ số góc của tiếp tuyến bằng \(-5\)
Cho hàm số \(y=f\left(x\right)=\dfrac{x-2}{x+1}\) có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến cắt 2 đường thẳng d1:x=-1 và d2:y=1 lần lượt tại A, B sao cho bán kính đường tròn nội tiếp tam giác IAB là lớn nhất.
Cho hàm số \(y=\dfrac{3x-1}{x-1}\) và điểm I(1;3) Tìm các tiếp tuyến của đồ thị hàm số biết tiếp tuyến đó cắt 2 đường thẳng x=1 và y=3 tạo thành 2 điểm A,B sao cho tam giác IAB cân tại I
Cho đồ thị hàm số y = x- 3mx+3m– 2(Cm). Chứng minh rằng tiếp tuyến của Cm tại giao của (Cm) với Oy luôn đi qua một điểm cố định.
Cho hàm số f(x)=2x^3-4x^2+3 (c)
a) tìm x sao cho f`(x)<0.
b) viết phương trình tiếp tuyến của đồ thi (c) biết tiếp tuyến đó song song với đường thẳng 2x+y-5=0.
Cho hàm số \(y=\dfrac{x-2}{x+1}\) và điểm I(-1;1) . Tìm các tiếp tuyến của đồ thị hàm số biết khoảng cách từ điểm I đến tiếp tuyến đó đạt giá trị lớn nhất
Cho hàm số y = f(x) = ax4 + bx3 + cx2 + dx + e (a≠0) có đồ thị (C) cắt trục hoành tại bốn điểm phân biệt là A(x1; 0), B(x2 ; 0), C(x3 ; 0), D(x4;0), với x1, x2, x3, x4 theo thứ tự lập thành cấp số cộng và hai tiếp tuyến của (C) tại A, B vuông góc với nhau. Tính giá trị của biếu thức S = (f ' (x3) + f ' (x4))2020