a: áp dụng bđt bunhiacopxki: (2x+y)2 ≤(22+12)(x2+y2)
⇔x2+y2 nn=64/5
dấu bằng xảy ra khi x=2y=8/5
thay vào pt(2) tìm m....
b: áp dụng bđt cauchy: 2x+y≥2√2xy
⇔xy ln=8 khi x=\(\dfrac{y}{2}\)=2
thay vào tìm m ở pt(2)
a: áp dụng bđt bunhiacopxki: (2x+y)2 ≤(22+12)(x2+y2)
⇔x2+y2 nn=64/5
dấu bằng xảy ra khi x=2y=8/5
thay vào pt(2) tìm m....
b: áp dụng bđt cauchy: 2x+y≥2√2xy
⇔xy ln=8 khi x=\(\dfrac{y}{2}\)=2
thay vào tìm m ở pt(2)
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
Cho hệ phương trình \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\) có nghiệm (x; y). Tìm m để biểu thức (xy+x-1) đạt giá trị lớn nhất.
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
Tìm m để HPT có nghiệm duy nhất (x;y) sao cho x,y có giá trị nhỏ nhất.
Cho hệ phương trình \(\left\{{}\begin{matrix}x-y=4\\2x+3y=5m+3\end{matrix}\right.\). Tìm \(m\) để hệ phương trình có nghiệm \(\left(x;y\right)\) sao cho biểu thức \(A=\dfrac{2019}{x^2+y^2-4}\) đạt giá trị lớn nhất.
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
Cho hệ phương trình \(\left\{{}\begin{matrix}mx+2y=18\\x-y=-6\end{matrix}\right.\) (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(2x+y=9\\\)
Cho hệ phương trình:\(\left\{{}\begin{matrix}x-y=4+2m\\4x+y=3m-4\end{matrix}\right.\) (m là tham số)
Tìm m để hệ có nghiệm (x ; y) thỏa mãn điều kiện: xy = -5
cho hệ phương trình \(\left\{{}\begin{matrix}4x-my-m-6=0\\mx-y-2m=0\end{matrix}\right.\)
tìm m để : a. hệ phương trình vô nghiệm
b. hệ phương trình có nghiệm duy nhất
c. hệ phương trình có vô số nghiệm
1. Giải hpt\(\left\{{}\begin{matrix}\dfrac{3y}{x-1}+\dfrac{2x}{y+1}=3\\\dfrac{2y}{x-1}-\dfrac{5x}{y+1}=2\end{matrix}\right.\)
2.Cho PT : x2-6x+2m-3=0
-Tìm m để PT có nghiệm x1,x2 thỏa : (x12-5x1+2m-4)(x22-5x2+2m-4)=2