Cho hình vuông ABCD. Gọi E; F và K lần lượt là trung điểm của AB; BC và CD. Gọi M là
giao điểm của AK và DF. N là giao điểm của CE và DF.
a) Chứng minh AECK là hình bình hành.
b) Chứng minh MD = MN.
c) Chứng minh DF ⊥ CE tại N.
d) Chứng minh AN = BC.
giải giúp em với ạ
Cho hình vuông ABCD gọi I, K lần lượt là trung điểm của AD và DC.
a) Chứng minh BI vuông góc với AK.
b) Gọi E là giao điểm của BI và AK. Chứng minh CE=AB.
Giúp tớ các bạn!
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM // AC. (M thuộc AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH vuông góc MN, AH cắt BC tại E. CM: BE = EC
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM // AC. (M thuộc AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH vuông góc MN, AH cắt BC tại E. CM: BE = EC
Cho tam giác ABC có góc A= 90 độ, đường cao AD. Kẻ DN // AB (N∈∈AC), DM // AC. (M∈∈AB). Gọi O là giao điểm của AD và MN.
a. CM: AD=MN
b. Gọi I, K lần lượt là trung điểm của BD và DC. CM: IMNK là hình thang vuông
c. Kẻ AH ⊥⊥ MN, AH cắt BC tại E. CM: BE = EC
GT: Cho ΔABC
D∈AB,E∈ACsao cho BD=CE
M, N, I, K lần lượt là trung điểm của DE, BC, BE, CD
KL: a) Tứ giác MINK là hình gì
b) Gọi G, H là giao điểm của IK với AB, AC. CMR ΔABCcân
Cho hình chữ nhật ABCD.Gọi M là trung điểm của AB.Kẻ MN vuông gốc với CD tại N.
a) c/m AMND là hình chữ nhật
b) O là trung điểm của MN .C/m O cũng là trung điểm của AC
c) Gọi E,N lần lượt là giao điểm của AN và CM với BD chứng minh
DE=EF=FB