Lời giải:
a. Vì $ABCD$ là hình chữ nhật nên $\widehat{A}=\widehat{D}=90^0$
$MN\perp CD$ nên $\widehat{MND}=90^0$
Tứ giác $AMND$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{N}$ nên là hcn.
b.
Hoàn toàn tương tự phần a ta thấy $\widheat{B}=\widehat{C}=\widehat{N}$ nên $BMNC$ là hcn
$\Rightarrow BM=NC$
$AMND$ là hcn nên $AM=DN$
Mà $AM=BM$ nên $AM=NC$
Có $AM\parallel NC$ (do $AB\parallel CD$) và $AM=NC$ nên $AMCN$ là hbh
$\Rightarrow AC, MN$ cắt nhau tại trung điểm mỗi đường.
Mà $O$ là trung điểm $MN$ nên $O$ cũng là trung điểm $AC$.
c.
Vì $AMCN$ là hbh (theo phần b) nên $AN\parallel CM$
$\Rightarrow EN\parallel FC$
$\Rightarrow \frac{DE}{EF}=\frac{DN}{NC}=1$ (theo định lý Talet)
$\Rightarrow DE=EF(1)$
Mặt khác:
$AN\parallel CM$
$\Rightarrow MF\parallel AE$
$\Rightarrow \frac{BF}{EF}=\frac{BM}{MA}=1$ (định lý Talet)
$\Rightarrow BF=EF(2)$
Từ $(1); (2)\Rightarrow DE=EF=BF$