góc DHB+góc DAB=180 độ
=>DABH nội tiếp
góc DHB+góc DAB=180 độ
=>DABH nội tiếp
cho tam giác ABC vuông cân tại A , điểm D thuộc AB, qua B kẻ đường thẳng vuông góc với CD tại H , đường thẳng BH cắt CA tại E . cm tứ giác AHBC nội tiếp
Cho đường trong tâm O , đg kính bc . Lấy điểm A trên cung bc sao cho ab<ac . Trên oc lấy D từ D kẻ đg thẳng vuông góc với bc cắt ac tại e .
a, chứng minh abde là tứ giác nội tiếp
b, chứng minh góc dae bằng góc dbe
c, đường cao ah của tam giác abc cắt đg tròn tại f . Chứng minh hf.dc = hc.ed
Bài 20. Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC với (O), (với B và C là các tiếp điểm).
a)Chứng minh tứ giác OBAC nội tiếp
b)Chứng minh OA vuông góc BC tại H
c)Trên BH lấy điểm D, kẻ đường thẳng vuông góc với OD tại D cắt các tiếp tuyến AB và AC tại E và F. Chứng minh DE = DF
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho (O), đường kính AB, vẽ dây cung CD vuông góc với OA. Lấy điểm M trên cung nhỏ BC (M<>C, M<>B), MA cắt CD tại H, trên MD lấy điểm E sao cho MC=ME. Chứng minh tứ giác ADEH nội tiếp
cho nửa đường tròn (0) đường kính AB, vẽ bán kình CO vuông góc với AB . M là 1 điểm bất kì trên cung AC .BM cắt AC tại H, gọi K là chân đường vuông góc kẻ từ H đến AB a) chứng minh tứ giác BCHK nội tiếp c) kẻ CP vuông góc với BM. trên đoạn BM lấy điểm E sao cho BE=AM chứng minh CM*MP= Pe
Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kể dây CD vuông góc AB tại H. Trên cung nhỏ AC lấy điểm E. Kẻ CK vuông góc AE tại K. Đường thẳng DE cắt CK tại F.
a) T/g AHCK nội tiếp
b) AH.AB=AD^2
c) Tam giác ACF là tam giác cân
ai chỉ em câu b vs ạ
Cho tứ giác ABCD nội tiếp đường tròn (O; R) đường kính BD (AD > AB). Đường thẳng qua A vuông góc với BD tại N, cắt đường tròn (O) tại M. Dây cung BC cắt dây cung AM tại I.
a) Chứng minh rằng: Tứ giác NICD nội tiếp
b) Chứng minh BN.BD = BI.BC
c) Qua N kẻ đường thẳng song song với AC, cắt dây cung BC tại P. Đường thẳng NP cắt đường thẳng DC tại Q. Chứng minh tứ giác MPCQ là hình chữ nhật.