Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho Hình vuông ABCD ,trên AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF.Vẽ AH vuông góc với BF (H∈BF),AH cắt DC và BC lần lượt tại 2 điểm M,N
a) CMR tứ giác AEMD là hình chữ nhật
b) Biết diện tích △BCH gấp 4 lần diện tích △ AEH.CMR AC=2EF
c) CMR: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Câu 1: Khi phân tích 2016 ra thừa số nguyên tố thì tổng các số nguyên tố là....
Câu 2: Cho hình vuông ABCD. Lấy các điểm E,F,G,H lần lượt trên cạnh AD, AB, DC và BC sao cho AE=AF=DH=5cm; BF=BG=12 cm. Diện tích EFGH=?
thanks mn nha!!))
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E, trên AD lấy F sao cho AE=AF.Vẽ AH\(\perp\) BF (H\(\in\) BF),AH cắt DC và BC tại M,N.
a)Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH.CMR:AC=2EF
b)CMR:\(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình chữ nhật ABCD. Kẻ AH BD (H BD).
a) Chứng minh: đồng dạng với
b) Chứng minh: AD^2 = DB.HD
c) Tia phân giác của góc ADB cắt AH và AB lần lượt tại M và K. Chứng minh: AK.AM = BK.HM
d) Gọi O là giao điểm của AC và BD. Lấy P thuộc AC, dựng hình chữ nhật AEPF (E∈ AB, F ∈ AD). BF cắt DE ở Q. Chứng minh rằng: EF//DB và 3 điểm A, Q, O thẳng hàng.