Cho hình vuông ABCD. Trên cạnh AB lấy điểm E sao cho BE= 1/3 AB . DE cắt CB tại K
a) Cm ΔADE ∼ Δ BKE
b) Gọi H là hình chiếu của C trên DE . Cm AD.HD= HC.AE
c) Tính diện tích Δ CDE biết AB= 6cm
d) Cm CH . KD= CD2 + CB.KB
Cho hình vuông ABCD. M là một điểm nằm trên BD (M khác B và D). Gọi E và F lần lượt là hình chiếu của M trên AB và AD.
a) ABMF là hình gì? Vì sao
b) Chứng minh DE=CF
c) Chứng minh DE, BF, CM đồng quy
MỌI NGƯỜI CHỈ CẦN TÓM TẮT CHO EM CÁCH LÀM CỦA CÂU C THÔI CŨNG ĐƯỢC Ạ. EM CẢM ƠN NHIỀU Ạ
Cho tam giác nhọn ABC, có AB = 12cm , AC = 15 cm . Trên các cạnh
AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: Δ ADE đồng dạng với ΔABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: ΔCEF đồng dạng ΔEAD?
c, Tính CF và FB khi biết BC = 18 cm
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
1. Cho ΔABC vuông tại A, đường cao AH
a/ Cm: ΔABC đồng dạng với ΔHAC
b/ Tia phân giác góc ABC cắt AH tại D và AC tại E. Cm: ΔADE cân
2. Cho ΔABC vuông tại C có góc BAC = 60 độ. Lấy 1 điểm D tùy ý trên cạnh AB sao cho BD <\(\frac{AB}{2}\) .
Qua điểm D vẽ tia Dx ⊥ AB tại D, tia Dx cắt AC tại E. Gọi I là giao điểm của BC và DE.
a/ Cm: ΔDBI đồng dạng với ΔCBA
b/ Tính diện tích ΔACD, biết diện tích ΔABE là 124cm2
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.