Cho hình vuông ABCD. Gọi E là trung điểm CD, F nằm trên cạnh BC sao cho BF=3FC. Chứng minh EF=1/2 AE. (gợi ý: Gọi I là trung điểm của BC, c/m EF =1/2 DI và DI = AE)
Cho hình vuông ABCD . Trên cạnh BC lấy điểm E , trên tia đối của tia DC lấy điểm F sao cho BE = DF .
a) Chứng minh ΔAEH vuông cân tại A
b) Gọi H là điểm đối xứng của A qua EF . Chứng minh AEHF là hình vuông.
Cho hình thang vuông ABCD có góc A= góc D=90 có AB=3,AD=8,CD=5. M,N theo thứ tự là trung điểm BC,AD. Gọi K là hình chiếu của M trên CD . Chứng minh MNDK là hình vuông
Cho hình thoi ABCD. Lấy các điểm M, N, P, Q lần lượt là trung điểm các
cạnh AB, BC, CD, DA. Chứng minh MNPQ là hình vuông.
cho hình bình hành abcd có ab = 2.ad. gọi m, n lần lượt là trung điểm của ab và cd. a) chứng minh tứ giác bmdn là hình bình hành. b) tia dm cắt cb tại i. tứ giác dnbi là hình gì ? vì sao ? c) gọi k là giao điểm của db và ni. chứng minh m, k, c thẳng hàng.
cho hình vuông abcd vẻ một tia a cắt BC,CD tại M,N đường thẳng A vuông góc AM cắt BC CD tại IQ chứng minh rằng tam giác AMI AMQ Cân Gọi E F là trung điểm của NI MQ chưng minh rằng EFDB thẳng hàng
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm AB, BC. CM cắt DN tại I.
chứng minh CM vuông góc DN
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE